Hi there @gosselinf!
I was able to get this to work - the code states that it is running 1 core, however have you found that it isnβt running 1 core?
I changed two things about your code:
- I turned off
library("parallel"); options(mc.cores = 1)
- as greta is able to manage its cores, this might conflate/confuse things
- removed the quotes around arguments:
reta::mcmc(
"model" = greta_model, "n_samples" = n_iter,
"warmup" = n_warmup, "chains" = n_chains, n_cores=1 )
While this technically works I would recommend against quoting the argument names in quotes as you lose autocomplete functionality in places like RStudio.
``` r
## load required packages and set basic options
################################################################################
library("tidyverse"); theme_set(theme_minimal())
# library("parallel"); options(mc.cores = 1)
library("greta")
#>
#> Attaching package: 'greta'
#> The following object is masked from 'package:dplyr':
#>
#> slice
#> The following objects are masked from 'package:stats':
#>
#> binomial, cov2cor, poisson
#> The following objects are masked from 'package:base':
#>
#> %*%, apply, backsolve, beta, chol2inv, colMeans, colSums, diag,
#> eigen, forwardsolve, gamma, identity, rowMeans, rowSums, sweep,
#> tapply
library("bayesplot")
#> This is bayesplot version 1.10.0
#> - Online documentation and vignettes at mc-stan.org/bayesplot
#> - bayesplot theme set to bayesplot::theme_default()
#> * Does _not_ affect other ggplot2 plots
#> * See ?bayesplot_theme_set for details on theme setting
library("bench")
## generate/specify data
################################################################################
theta <- 5 # poisson theta
set.seed(1)
(y <- rpois(1, theta))
#> [1] 4
y <- as_data(y)
#> βΉ Initialising python and checking dependencies, this may take a moment.
#> β Initialising python and checking dependencies ... done!
#>
## specify greta model
################################################################################
theta <- gamma(3,1)
distribution(y) <- poisson(theta)
greta_model <- model(theta)
# plot(greta_model)
## configure model settings
################################################################################
n_chains <- 4
n_iter <- 1e4L
n_warmup <- 1e3L
## fit model
################################################################################
greta_fit <- greta::mcmc(
model = greta_model,
n_samples = n_iter,
warmup = n_warmup,
chains = n_chains,
n_cores = 1
)
#> running 4 chains simultaneously each on 1 core
#>
#> warmup 0/1000 | eta: ?s warmup == 50/1000 | eta: 14s | <1% bad warmup ==== 100/1000 | eta: 8s | <1% bad warmup ===== 150/1000 | eta: 6s | 1% bad warmup ======= 200/1000 | eta: 5s | 1% bad warmup ========= 250/1000 | eta: 4s | <1% bad warmup =========== 300/1000 | eta: 3s | <1% bad warmup ============= 350/1000 | eta: 3s | <1% bad warmup ============== 400/1000 | eta: 3s | <1% bad warmup ================ 450/1000 | eta: 2s | <1% bad warmup ================== 500/1000 | eta: 2s | <1% bad warmup ==================== 550/1000 | eta: 2s | <1% bad warmup ====================== 600/1000 | eta: 1s | <1% bad warmup ======================= 650/1000 | eta: 1s | <1% bad warmup ========================= 700/1000 | eta: 1s | <1% bad warmup =========================== 750/1000 | eta: 1s | <1% bad warmup ============================= 800/1000 | eta: 1s | <1% bad warmup =============================== 850/1000 | eta: 1s | <1% bad warmup ================================ 900/1000 | eta: 0s | <1% bad warmup ================================== 950/1000 | eta: 0s | <1% bad warmup ==================================== 1000/1000 | eta: 0s | <1% bad
#> sampling 0/10000 | eta: ?s sampling 50/10000 | eta: 14s sampling 100/10000 | eta: 13s sampling = 150/10000 | eta: 12s sampling = 200/10000 | eta: 12s sampling = 250/10000 | eta: 13s sampling = 300/10000 | eta: 13s sampling = 350/10000 | eta: 13s sampling = 400/10000 | eta: 13s sampling == 450/10000 | eta: 12s sampling == 500/10000 | eta: 12s sampling == 550/10000 | eta: 12s sampling == 600/10000 | eta: 11s sampling == 650/10000 | eta: 11s sampling === 700/10000 | eta: 12s sampling === 750/10000 | eta: 12s sampling === 800/10000 | eta: 11s sampling === 850/10000 | eta: 12s sampling === 900/10000 | eta: 11s sampling === 950/10000 | eta: 11s sampling ==== 1000/10000 | eta: 11s sampling ==== 1050/10000 | eta: 11s sampling ==== 1100/10000 | eta: 11s sampling ==== 1150/10000 | eta: 11s sampling ==== 1200/10000 | eta: 11s sampling ==== 1250/10000 | eta: 11s sampling ===== 1300/10000 | eta: 11s sampling ===== 1350/10000 | eta: 11s sampling ===== 1400/10000 | eta: 11s sampling ===== 1450/10000 | eta: 11s sampling ===== 1500/10000 | eta: 11s sampling ====== 1550/10000 | eta: 11s sampling ====== 1600/10000 | eta: 10s sampling ====== 1650/10000 | eta: 11s | <1% bad sampling ====== 1700/10000 | eta: 10s | <1% bad sampling ====== 1750/10000 | eta: 10s | <1% bad sampling ====== 1800/10000 | eta: 10s | <1% bad sampling ======= 1850/10000 | eta: 10s | <1% bad sampling ======= 1900/10000 | eta: 10s | <1% bad sampling ======= 1950/10000 | eta: 10s | <1% bad sampling ======= 2000/10000 | eta: 10s | <1% bad sampling ======= 2050/10000 | eta: 10s | <1% bad sampling ======== 2100/10000 | eta: 10s | <1% bad sampling ======== 2150/10000 | eta: 10s | <1% bad sampling ======== 2200/10000 | eta: 10s | <1% bad sampling ======== 2250/10000 | eta: 10s | <1% bad sampling ======== 2300/10000 | eta: 10s | <1% bad sampling ======== 2350/10000 | eta: 10s | <1% bad sampling ========= 2400/10000 | eta: 10s | <1% bad sampling ========= 2450/10000 | eta: 10s | <1% bad sampling ========= 2500/10000 | eta: 10s | <1% bad sampling ========= 2550/10000 | eta: 10s | <1% bad sampling ========= 2600/10000 | eta: 9s | <1% bad sampling ========== 2650/10000 | eta: 9s | <1% bad sampling ========== 2700/10000 | eta: 9s | <1% bad sampling ========== 2750/10000 | eta: 9s | <1% bad sampling ========== 2800/10000 | eta: 9s | <1% bad sampling ========== 2850/10000 | eta: 9s | <1% bad sampling ========== 2900/10000 | eta: 9s | <1% bad sampling =========== 2950/10000 | eta: 9s | <1% bad sampling =========== 3000/10000 | eta: 9s | <1% bad sampling =========== 3050/10000 | eta: 9s | <1% bad sampling =========== 3100/10000 | eta: 9s | <1% bad sampling =========== 3150/10000 | eta: 9s | <1% bad sampling ============ 3200/10000 | eta: 9s | <1% bad sampling ============ 3250/10000 | eta: 9s | <1% bad sampling ============ 3300/10000 | eta: 9s | <1% bad sampling ============ 3350/10000 | eta: 9s | <1% bad sampling ============ 3400/10000 | eta: 8s | <1% bad sampling ============ 3450/10000 | eta: 8s | <1% bad sampling ============= 3500/10000 | eta: 8s | <1% bad sampling ============= 3550/10000 | eta: 8s | <1% bad sampling ============= 3600/10000 | eta: 8s | <1% bad sampling ============= 3650/10000 | eta: 8s | <1% bad sampling ============= 3700/10000 | eta: 8s | <1% bad sampling ============== 3750/10000 | eta: 8s | <1% bad sampling ============== 3800/10000 | eta: 8s | <1% bad sampling ============== 3850/10000 | eta: 8s | <1% bad sampling ============== 3900/10000 | eta: 8s | <1% bad sampling ============== 3950/10000 | eta: 8s | <1% bad sampling ============== 4000/10000 | eta: 8s | <1% bad sampling =============== 4050/10000 | eta: 8s | <1% bad sampling =============== 4100/10000 | eta: 8s | <1% bad sampling =============== 4150/10000 | eta: 8s | <1% bad sampling =============== 4200/10000 | eta: 8s | <1% bad sampling =============== 4250/10000 | eta: 7s | <1% bad sampling =============== 4300/10000 | eta: 7s | <1% bad sampling ================ 4350/10000 | eta: 7s | <1% bad sampling ================ 4400/10000 | eta: 7s | <1% bad sampling ================ 4450/10000 | eta: 7s | <1% bad sampling ================ 4500/10000 | eta: 7s | <1% bad sampling ================ 4550/10000 | eta: 7s | <1% bad sampling ================= 4600/10000 | eta: 7s | <1% bad sampling ================= 4650/10000 | eta: 7s | <1% bad sampling ================= 4700/10000 | eta: 7s | <1% bad sampling ================= 4750/10000 | eta: 7s | <1% bad sampling ================= 4800/10000 | eta: 7s | <1% bad sampling ================= 4850/10000 | eta: 7s | <1% bad sampling ================== 4900/10000 | eta: 7s | <1% bad sampling ================== 4950/10000 | eta: 7s | <1% bad sampling ================== 5000/10000 | eta: 7s | <1% bad sampling ================== 5050/10000 | eta: 6s | <1% bad sampling ================== 5100/10000 | eta: 6s | <1% bad sampling =================== 5150/10000 | eta: 6s | <1% bad sampling =================== 5200/10000 | eta: 6s | <1% bad sampling =================== 5250/10000 | eta: 6s | <1% bad sampling =================== 5300/10000 | eta: 6s | <1% bad sampling =================== 5350/10000 | eta: 6s | <1% bad sampling =================== 5400/10000 | eta: 6s | <1% bad sampling ==================== 5450/10000 | eta: 6s | <1% bad sampling ==================== 5500/10000 | eta: 6s | <1% bad sampling ==================== 5550/10000 | eta: 6s | <1% bad sampling ==================== 5600/10000 | eta: 6s | <1% bad sampling ==================== 5650/10000 | eta: 6s | <1% bad sampling ===================== 5700/10000 | eta: 6s | <1% bad sampling ===================== 5750/10000 | eta: 6s | <1% bad sampling ===================== 5800/10000 | eta: 6s | <1% bad sampling ===================== 5850/10000 | eta: 5s | <1% bad sampling ===================== 5900/10000 | eta: 5s | <1% bad sampling ===================== 5950/10000 | eta: 5s | <1% bad sampling ====================== 6000/10000 | eta: 5s | <1% bad sampling ====================== 6050/10000 | eta: 5s | <1% bad sampling ====================== 6100/10000 | eta: 5s | <1% bad sampling ====================== 6150/10000 | eta: 5s | <1% bad sampling ====================== 6200/10000 | eta: 5s | <1% bad sampling ====================== 6250/10000 | eta: 5s | <1% bad sampling ======================= 6300/10000 | eta: 5s | <1% bad sampling ======================= 6350/10000 | eta: 5s | <1% bad sampling ======================= 6400/10000 | eta: 5s | <1% bad sampling ======================= 6450/10000 | eta: 5s | <1% bad sampling ======================= 6500/10000 | eta: 5s | <1% bad sampling ======================== 6550/10000 | eta: 5s | <1% bad sampling ======================== 6600/10000 | eta: 4s | <1% bad sampling ======================== 6650/10000 | eta: 4s | <1% bad sampling ======================== 6700/10000 | eta: 4s | <1% bad sampling ======================== 6750/10000 | eta: 4s | <1% bad sampling ======================== 6800/10000 | eta: 4s | <1% bad sampling ========================= 6850/10000 | eta: 4s | <1% bad sampling ========================= 6900/10000 | eta: 4s | <1% bad sampling ========================= 6950/10000 | eta: 4s | <1% bad sampling ========================= 7000/10000 | eta: 4s | <1% bad sampling ========================= 7050/10000 | eta: 4s | <1% bad sampling ========================== 7100/10000 | eta: 4s | <1% bad sampling ========================== 7150/10000 | eta: 4s | <1% bad sampling ========================== 7200/10000 | eta: 4s | <1% bad sampling ========================== 7250/10000 | eta: 4s | <1% bad sampling ========================== 7300/10000 | eta: 4s | <1% bad sampling ========================== 7350/10000 | eta: 3s | <1% bad sampling =========================== 7400/10000 | eta: 3s | <1% bad sampling =========================== 7450/10000 | eta: 3s | <1% bad sampling =========================== 7500/10000 | eta: 3s | <1% bad sampling =========================== 7550/10000 | eta: 3s | <1% bad sampling =========================== 7600/10000 | eta: 3s | <1% bad sampling ============================ 7650/10000 | eta: 3s | <1% bad sampling ============================ 7700/10000 | eta: 3s | <1% bad sampling ============================ 7750/10000 | eta: 3s | <1% bad sampling ============================ 7800/10000 | eta: 3s | <1% bad sampling ============================ 7850/10000 | eta: 3s | <1% bad sampling ============================ 7900/10000 | eta: 3s | <1% bad sampling ============================= 7950/10000 | eta: 3s | <1% bad sampling ============================= 8000/10000 | eta: 3s | <1% bad sampling ============================= 8050/10000 | eta: 3s | <1% bad sampling ============================= 8100/10000 | eta: 2s | <1% bad sampling ============================= 8150/10000 | eta: 2s | <1% bad sampling ============================== 8200/10000 | eta: 2s | <1% bad sampling ============================== 8250/10000 | eta: 2s | <1% bad sampling ============================== 8300/10000 | eta: 2s | <1% bad sampling ============================== 8350/10000 | eta: 2s | <1% bad sampling ============================== 8400/10000 | eta: 2s | <1% bad sampling ============================== 8450/10000 | eta: 2s | <1% bad sampling =============================== 8500/10000 | eta: 2s | <1% bad sampling =============================== 8550/10000 | eta: 2s | <1% bad sampling =============================== 8600/10000 | eta: 2s | <1% bad sampling =============================== 8650/10000 | eta: 2s | <1% bad sampling =============================== 8700/10000 | eta: 2s | <1% bad sampling ================================ 8750/10000 | eta: 2s | <1% bad sampling ================================ 8800/10000 | eta: 2s | <1% bad sampling ================================ 8850/10000 | eta: 1s | <1% bad sampling ================================ 8900/10000 | eta: 1s | <1% bad sampling ================================ 8950/10000 | eta: 1s | <1% bad sampling ================================ 9000/10000 | eta: 1s | <1% bad sampling ================================= 9050/10000 | eta: 1s | <1% bad sampling ================================= 9100/10000 | eta: 1s | <1% bad sampling ================================= 9150/10000 | eta: 1s | <1% bad sampling ================================= 9200/10000 | eta: 1s | <1% bad sampling ================================= 9250/10000 | eta: 1s | <1% bad sampling ================================= 9300/10000 | eta: 1s | <1% bad sampling ================================== 9350/10000 | eta: 1s | <1% bad sampling ================================== 9400/10000 | eta: 1s | <1% bad sampling ================================== 9450/10000 | eta: 1s | <1% bad sampling ================================== 9500/10000 | eta: 1s | <1% bad sampling ================================== 9550/10000 | eta: 1s | <1% bad sampling =================================== 9600/10000 | eta: 1s | <1% bad sampling =================================== 9650/10000 | eta: 0s | <1% bad sampling =================================== 9700/10000 | eta: 0s | <1% bad sampling =================================== 9750/10000 | eta: 0s | <1% bad sampling =================================== 9800/10000 | eta: 0s | <1% bad sampling =================================== 9850/10000 | eta: 0s | <1% bad sampling ==================================== 9900/10000 | eta: 0s | <1% bad sampling ==================================== 9950/10000 | eta: 0s | <1% bad sampling ==================================== 10000/10000 | eta: 0s | <1% bad
## assess fit
################################################################################
summary(greta_fit)
#>
#> Iterations = 1:10000
#> Thinning interval = 1
#> Number of chains = 4
#> Sample size per chain = 10000
#>
#> 1. Empirical mean and standard deviation for each variable,
#> plus standard error of the mean:
#>
#> Mean SD Naive SE Time-series SE
#> 3.511833 1.316709 0.006584 0.013042
#>
#> 2. Quantiles for each variable:
#>
#> 2.5% 25% 50% 75% 97.5%
#> 1.419 2.568 3.362 4.282 6.450
Created on 2023-02-06 with reprex v2.0.2
Session info
sessioninfo::session_info()
#> β Session info βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> setting value
#> version R version 4.2.2 (2022-10-31)
#> os macOS Ventura 13.2
#> system aarch64, darwin20
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Australia/Hobart
#> date 2023-02-06
#> pandoc 2.19.2 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
#>
#> β Packages βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> package * version date (UTC) lib source
#> abind 1.4-5 2016-07-21 [1] CRAN (R 4.2.0)
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.2.0)
#> backports 1.4.1 2021-12-13 [1] CRAN (R 4.2.0)
#> base64enc 0.1-3 2015-07-28 [1] CRAN (R 4.2.0)
#> bayesplot * 1.10.0 2022-11-16 [1] CRAN (R 4.2.0)
#> bench * 1.1.2 2021-11-30 [1] CRAN (R 4.2.0)
#> broom 1.0.3 2023-01-25 [1] CRAN (R 4.2.0)
#> callr 3.7.3 2022-11-02 [1] CRAN (R 4.2.0)
#> cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.2.0)
#> cli 3.6.0 2023-01-09 [1] CRAN (R 4.2.0)
#> coda 0.19-4 2020-09-30 [1] CRAN (R 4.2.0)
#> codetools 0.2-19 2023-02-01 [1] CRAN (R 4.2.0)
#> colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.2.0)
#> crayon 1.5.2 2022-09-29 [1] CRAN (R 4.2.0)
#> DBI 1.1.3 2022-06-18 [1] CRAN (R 4.2.0)
#> dbplyr 2.3.0 2023-01-16 [1] CRAN (R 4.2.0)
#> digest 0.6.31 2022-12-11 [1] CRAN (R 4.2.0)
#> dplyr * 1.1.0 2023-01-29 [1] CRAN (R 4.2.1)
#> ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.2.0)
#> evaluate 0.20 2023-01-17 [1] CRAN (R 4.2.0)
#> fansi 1.0.4 2023-01-22 [1] CRAN (R 4.2.0)
#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.0)
#> forcats * 1.0.0 2023-01-29 [1] CRAN (R 4.2.0)
#> fs 1.6.0 2023-01-23 [1] CRAN (R 4.2.0)
#> future 1.31.0 2023-02-01 [1] CRAN (R 4.2.0)
#> gargle 1.3.0 2023-01-30 [1] CRAN (R 4.2.0)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.0)
#> ggplot2 * 3.4.0 2022-11-04 [1] CRAN (R 4.2.0)
#> globals 0.16.2 2022-11-21 [1] CRAN (R 4.2.1)
#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.0)
#> googledrive 2.0.0 2021-07-08 [1] CRAN (R 4.2.0)
#> googlesheets4 1.0.1 2022-08-13 [1] CRAN (R 4.2.0)
#> greta * 0.4.3.9000 2023-02-06 [1] local
#> gtable 0.3.1 2022-09-01 [1] CRAN (R 4.2.0)
#> haven 2.5.1 2022-08-22 [1] CRAN (R 4.2.0)
#> here 1.0.1 2020-12-13 [1] CRAN (R 4.2.0)
#> hms 1.1.2 2022-08-19 [1] CRAN (R 4.2.0)
#> htmltools 0.5.4 2022-12-07 [1] CRAN (R 4.2.0)
#> httr 1.4.4 2022-08-17 [1] CRAN (R 4.2.0)
#> jsonlite 1.8.4 2022-12-06 [1] CRAN (R 4.2.0)
#> knitr 1.42 2023-01-25 [1] CRAN (R 4.2.0)
#> lattice 0.20-45 2021-09-22 [1] CRAN (R 4.2.2)
#> lifecycle 1.0.3 2022-10-07 [1] CRAN (R 4.2.0)
#> listenv 0.9.0 2022-12-16 [1] CRAN (R 4.2.0)
#> lubridate 1.9.1 2023-01-24 [1] CRAN (R 4.2.0)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
#> Matrix 1.5-3 2022-11-11 [1] CRAN (R 4.2.0)
#> modelr 0.1.10 2022-11-11 [1] CRAN (R 4.2.0)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.0)
#> parallelly 1.34.0 2023-01-13 [1] CRAN (R 4.2.0)
#> pillar 1.8.1 2022-08-19 [1] CRAN (R 4.2.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
#> png 0.1-8 2022-11-29 [1] CRAN (R 4.2.0)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.2.0)
#> processx 3.8.0 2022-10-26 [1] CRAN (R 4.2.0)
#> progress 1.2.2 2019-05-16 [1] CRAN (R 4.2.0)
#> ps 1.7.2 2022-10-26 [1] CRAN (R 4.2.0)
#> purrr * 1.0.1 2023-01-10 [1] CRAN (R 4.2.0)
#> R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.2.0)
#> R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.2.0)
#> R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.2.0)
#> R.utils 2.12.2 2022-11-11 [1] CRAN (R 4.2.0)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.0)
#> Rcpp 1.0.10 2023-01-22 [1] CRAN (R 4.2.0)
#> readr * 2.1.3 2022-10-01 [1] CRAN (R 4.2.0)
#> readxl 1.4.1 2022-08-17 [1] CRAN (R 4.2.0)
#> reprex 2.0.2 2022-08-17 [1] CRAN (R 4.2.0)
#> reticulate 1.28 2023-01-27 [1] CRAN (R 4.2.0)
#> rlang 1.0.6 2022-09-24 [1] CRAN (R 4.2.0)
#> rmarkdown 2.20 2023-01-19 [1] CRAN (R 4.2.0)
#> rprojroot 2.0.3 2022-04-02 [1] CRAN (R 4.2.0)
#> rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.0)
#> rvest 1.0.3 2022-08-19 [1] CRAN (R 4.2.0)
#> scales 1.2.1 2022-08-20 [1] CRAN (R 4.2.0)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.0)
#> stringi 1.7.12 2023-01-11 [1] CRAN (R 4.2.0)
#> stringr * 1.5.0 2022-12-02 [1] CRAN (R 4.2.0)
#> styler 1.9.0 2023-01-15 [1] CRAN (R 4.2.0)
#> tensorflow 2.11.0 2022-12-19 [1] CRAN (R 4.2.0)
#> tfautograph 0.3.2 2021-09-17 [1] CRAN (R 4.2.0)
#> tfruns 1.5.1 2022-09-05 [1] CRAN (R 4.2.0)
#> tibble * 3.1.8 2022-07-22 [1] CRAN (R 4.2.0)
#> tidyr * 1.3.0 2023-01-24 [1] CRAN (R 4.2.0)
#> tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.2.0)
#> tidyverse * 1.3.2 2022-07-18 [1] CRAN (R 4.2.0)
#> timechange 0.2.0 2023-01-11 [1] CRAN (R 4.2.0)
#> tzdb 0.3.0 2022-03-28 [1] CRAN (R 4.2.0)
#> utf8 1.2.3 2023-01-31 [1] CRAN (R 4.2.0)
#> vctrs 0.5.2 2023-01-23 [1] CRAN (R 4.2.0)
#> whisker 0.4.1 2022-12-05 [1] CRAN (R 4.2.0)
#> withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.0)
#> xfun 0.37 2023-01-31 [1] CRAN (R 4.2.0)
#> xml2 1.3.3 2021-11-30 [1] CRAN (R 4.2.0)
#> yaml 2.3.7 2023-01-23 [1] CRAN (R 4.2.0)
#>
#> [1] /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library
#>
#> β Python configuration βββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> python: /Users/nick/Library/r-miniconda-arm64/envs/greta-env-tf2/bin/python
#> libpython: /Users/nick/Library/r-miniconda-arm64/envs/greta-env-tf2/lib/libpython3.8.dylib
#> pythonhome: /Users/nick/Library/r-miniconda-arm64/envs/greta-env-tf2:/Users/nick/Library/r-miniconda-arm64/envs/greta-env-tf2
#> version: 3.8.15 | packaged by conda-forge | (default, Nov 22 2022, 08:49:06) [Clang 14.0.6 ]
#> numpy: /Users/nick/Library/r-miniconda-arm64/envs/greta-env-tf2/lib/python3.8/site-packages/numpy
#> numpy_version: 1.23.2
#> tensorflow: /Users/nick/Library/r-miniconda-arm64/envs/greta-env-tf2/lib/python3.8/site-packages/tensorflow
#>
#> NOTE: Python version was forced by use_python function
#>
#> ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
Let me know if youβve got any questions!